Bis(butylammonium) tin iodide: photoluminescence

Photoluminescence Verified
Origin: experimental (T = 298.0 K)
Space group: P b c a
D. Mitzi, Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb), Chem. Mater. 8, 791‑800 (1996). doi: 10.1021/cm9505097.
System description
Dimensionality: 2D n: 1
Sample type: single crystal
Related data
This data set is directly linked to other data sets: See all related data

Starting materials: SnI2, HI, C4H9NH2

Product: Dark red sheetlike crystals

Description: Grow the crystals under slowly-cooled aqueous hydriodic acid solutions. Perform all synthetic steps and crystal manipulations after synthesis in an inert atmosphere to prevent oxidation. Dissolve 0.481 g (1.29 mmol) of SnI2 in 2 mL of concentrated (57 wt %) aqueous HI solvent under flowing argon at 90 °C. In a separate tube, dissolve 2.58 mmol of (C4H9NH2).HI in 3 mL of concentrated HI solution and add to the metal halide solution. Ramp the solution temperature at 2 °C/h from 90 to -10 °C, filter the crystals formed under argon or nitrogen and dry in argon at 80 °C.

Method: Photoluminescence

Description: Collect the photoluminescence spectra within several hours after the crystals were synthesized, and maintain the samples in an argon-filled cell during measurement to prevent degradation. The photoluminescence spectra were excited by 457.9 nm (2.71 eV) light from an argon ion laser. This light was strongly absorbed by each sample, ensuring that the observed luminescence came from the front side of the samples. The excitation density was below 1 W cm-2. Refer to Page 794 for details.

D. Mitzi, Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb), Chem. Mater. 8, 791‑800 (1996). doi: 10.1021/cm9505097.

Extraction method: Engauge Digitizer, Figure 5
Entry added on: March 14, 2019, 4:18 p.m.
Entry added by: Xiaochen Du Duke University
Last updated on: June 22, 2022, 9:51 p.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 17 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Photoluminescence
Origin: experimental
Space group: Pbca
Y. Li, H. Zhou, M. Xia, H. Chen, T. Wang, H. Gao, X. Sheng, Y. Han, Z. Chen, L. Dou, H. Zhu, and E. Shi, Phase-pure 2D tin halide perovskite thin flakes for stable lasing, Science Advances 9, eadh0517‑eadh0517 (2023). doi: 10.1126/sciadv.adh0517.
System description
Dimensionality: 2D n: 1
Sample type: single crystal

Starting materials: BAI, SnI2, HI, H3PO2

Product: Single crystals of 2D tin halide perovskites. Thin flakes were then exfoliated from the single crystals.

Description: Single crystals synthesized by slow cooling method. Growth solution prepared with 0.45mmol BAI, 0.40mmol SnI2, 1mL HI, and 0.1mL H3PO2 in a sealed glass vial and placed in a muffle furnace and heated until completely dissolved. Solution cooled to room temperature at a rate of 2°C/hour. Crystals were then dried and stored in a nitrogen glove box.

Method: Photoluminescence spectroscopy

Description: Samples excited with mercury fluorescence light source (C-LHGFI HG LAMP). The flourescence filter cube contains a bandpass filter from 330-385 nm for excitation, a dichroic mirror with a cutoff wavelength of 400nm for light splitting, and a long pass filter of 410nm for emission. PL spectra were collected by Princeton Instruments spectrometer (HRS-300S).

Y. Li, H. Zhou, M. Xia, H. Chen, T. Wang, H. Gao, X. Sheng, Y. Han, Z. Chen, L. Dou, H. Zhu, and E. Shi, Phase-pure 2D tin halide perovskite thin flakes for stable lasing, Science Advances 9, eadh0517‑eadh0517 (2023). doi: 10.1126/sciadv.adh0517.

Extraction method: Manual from article
Entry added on: Dec. 12, 2023, 12:16 p.m.
Entry added by: Kelly Ma
Last updated on: Dec. 12, 2023, 2:49 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2441 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!


License

All data is available under the Creative Commons license with attribution clause, described here and, in its full text, here.