Methylammonium lead iodide: band gap (optical, diffuse reflectance)

Band gap (optical, diffuse reflectance) Verified
Origin: experimental (T = 298.0 K)
Band gap (optical, diffuse reflectance)

Crystal system: tetragonal

Band gap (optical, diffuse reflectance), eV
Fixed parameters:
  • temperature = 298.0 K
T. Baikie, N. Barrow, Y. Fang, P. Keenan, P. Slater, R. Piltz, M. Gutmann, S. Mhaisalkar, and T. White, A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X = I, Br and Cl), Journal of Materials Chemistry A 3, 9298‑9307 (2015). doi: 10.1039/c5ta01125f.
System description
Dimensionality: 3D
Sample type: powder

Starting materials: Lead(II) acetate (Chemical Reagents, Sigma), concentrated aqueous HI, CH3NH2 (40% soluble in water, Merck)

Product: MAPbI3 Single crystal

Description: Precipitate polycrystalline MAPbI3 from a halogenated acid solution using the method of [1]. Dissolve 1.88 g of lead(II) acetate in 40 ml concentrated to 57 wt% HI aqueous solution warmed (~90 °C) in a water bath. Then add another 2 ml of HI solution with 0.45 g CH3NH2. Crystallize by cooling the solution from 90 °C to room temperature over 3 hours. Wash product with acetone and dry overnight at 100 °C in a vacuum oven. Obtain larger crystals via slow cooling from 90 to 50 °C over 3 days. Refer to Page 9299 Section 2.1 Synthesis.

Comment: Black crystals; Synthesis references: [1] A. Poglitsch and D. Weber, J. Chem. Phys., 1987, 87, 6373–6378. [2] Q. Xu, T. Eguchi, H. Nakayama, N. Nakamura and M. Kishita, Z. Naturforsch., A: Phys. Sci., 1991, 46, 240–246.

Method: UV-Vis absorption (diffuse reflectance)

Description: UV-Visible-NIR spectrophotometer (Shimadzu UV-3600) with integrating sphere attachment (ISR-3100) operating in the 300–1500 nm region. Highly refined barium sulfate powder (Wako, pure) was used as a reflectance standard. Optical absorption coefficient was determined according to the Kubelka–Munk equation. In this manner, optical band gaps for the perovskites were determined. Refer to Page 9300 Section 3.1 Paragraph 3; Figure 3,4.

T. Baikie, N. Barrow, Y. Fang, P. Keenan, P. Slater, R. Piltz, M. Gutmann, S. Mhaisalkar, and T. White, A combined single crystal neutron/X-ray diffraction and solid-state nuclear magnetic resonance study of the hybrid perovskites CH3NH3PbX3 (X = I, Br and Cl), Journal of Materials Chemistry A 3, 9298‑9307 (2015). doi: 10.1039/c5ta01125f.

Extraction method: Manual entry
Entry added on: March 24, 2019, 2:34 p.m.
Entry added by: Xiaochen Du Duke University
Last updated on: March 29, 2022, 4 p.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 132 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Band gap (optical, diffuse reflectance) Verified
Origin: experimental (T = 298.0 K)
Space group: I 4 c m
Band gap (optical, diffuse reflectance)

Crystal system: unknown

Band gap (optical, diffuse reflectance), eV
Fixed parameters:
  • temperature = 298.0 K
C. Stoumpos, C. Malliakas, and M. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorganic Chemistry 52, 9019‑9038 (2013). doi: 10.1021/ic401215x.
System description
Dimensionality: 3D
Sample type: single crystal

Starting materials: CH3NH3I [from syn], PbI2 [from syn], distilled HI 57% aqueous (99.95%), H3PO2 (50% aqueous)

Product: Black MAPbI3 crystals

Description: Charge 100 ml 2-necked round bottom flask with a mixture of aqueous HI (6.8 ml, 7.58M) and aqueous H3PO2 (1.7 ml, 9.14M). The liquid was degassed by passing a stream of nitrogen through it for 1 min and keeping it under a nitrogen atmosphere throughout the experiment. Dissolve PbI2 (462 mg, 1 mmol) in the mixture upon heating the flask to 120 °C using an oil bath, under constant magnetic stirring, forming a bright yellow solution. Add solid CH3NH3I (159 mg, 1 mmol). Evaporate solution to approximately half its original volume by heating at 120 °C. Discontinue stirring and leave the solution to cool back to room temperature. Upon cooling, black, rhombic dodecahedral crystals (12 faces) of the title compound precipitated. Leave crystals to grow for a further 24 h under a nitrogen atmosphere before filtering and washing copiously with degassed EtOH. Yield 70-90%.

Method: Optical-diffuse reflectance

Description: Measurements were performed at room temperature using a Shimadzu UV-3101 PC double-beam, double-monochromator spectrophotometer operating from 200 to 2500 nm. BaSO4 was used as a nonabsorbing reflectance reference. The generated reflectance-versus-wavelength data were used to estimate the band gap of the material by converting reflectance to absorbance data according to the Kubelka−Munk equation: α/S =(1 − R)^2/2R, where R is the reflectance and α and S are the absorption and scattering coefficients, respectively. Refer to Page 9029 Figure 9.

C. Stoumpos, C. Malliakas, and M. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorganic Chemistry 52, 9019‑9038 (2013). doi: 10.1021/ic401215x.

Extraction method: Manual entry
Entry added on: April 5, 2019, 1:57 p.m.
Entry added by: Xiaochen Du Duke University
Last updated on: June 22, 2022, 9:53 p.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 147 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Band gap (optical, diffuse reflectance) Verified
Origin: experimental (T = 298.0 K)
Band gap (optical, diffuse reflectance)

Crystal system: tetragonal

Band gap (optical, diffuse reflectance), eV
Fixed parameters:
  • temperature = 298.0 K
C. Stoumpos, C. Malliakas, and M. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorganic Chemistry 52, 9019‑9038 (2013). doi: 10.1021/ic401215x.
System description
Dimensionality: 3D
Sample type: bulk polycrystalline

Starting materials: CH3NH3I, PbI2

Product: Black MAPbI3 Solid

Description: Load equimolar amounts of PbI2 and MAI in a 9mm pyrex tube. Shake materials mechanically to ensure a homogenous mixture. Place the tube on a sealing line evacuated to 10-4 mbar and flame sealed. Immerse tube on a sand bath standing at 200 °C, such that the mixture of solids was heated homogeneously. Maintain 4/5 of the tube outside the bath at room temperature. Leave solids in the bath for 2 h to form a homogeneous black solid.

Method: Optical-diffuse reflectance

Description: Measurements were performed at room temperature using a Shimadzu UV-3101 PC double-beam, double-monochromator spectrophotometer operating from 200 to 2500 nm. BaSO4 was used as a nonabsorbing reflectance reference. The generated reflectance-versus-wavelength data were used to estimate the band gap of the material by converting reflectance to absorbance data according to the Kubelka−Munk equation: α/S =(1 − R)^2/2R, where R is the reflectance and α and S are the absorption and scattering coefficients, respectively. Refer to Page 9029 Figure 9.

C. Stoumpos, C. Malliakas, and M. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorganic Chemistry 52, 9019‑9038 (2013). doi: 10.1021/ic401215x.

Extraction method: Manual entry
Entry added on: April 5, 2019, 2:17 p.m.
Entry added by: Xiaochen Du Duke University
Last updated on: Aug. 31, 2022, 11:20 a.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 150 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Band gap (optical, diffuse reflectance) Verified
Origin: experimental (T = 298.0 K)
Band gap (optical, diffuse reflectance)

Crystal system: unknown

Band gap (optical, diffuse reflectance), eV
Fixed parameters:
  • temperature = 298.0 K
C. Stoumpos, C. Malliakas, and M. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorganic Chemistry 52, 9019‑9038 (2013). doi: 10.1021/ic401215x.
System description
Dimensionality: 3D
Sample type: bulk polycrystalline

Starting materials: CH3NH3I, PbI2

Product: Black MAPbI3 Ingot

Description: Load equimolar amounts of PbI2 and MAI in a 15mm pyrex test tube. Shake materials mechanically to ensure a homogenous mixture. Immerse in a sand bath standing at 350 °C under a gentle flow of nitrogen. The reaction proceeds within 0.5-1 min. Pb-containing solids decompose on prolonged heating (> 3 min) or by raising the temperature above 400 °C, through evolution of I2 gas, crystallizing on the cooler walls of the tube.

Method: Optical-diffuse reflectance

Description: Measurements were performed at room temperature using a Shimadzu UV-3101 PC double-beam, double-monochromator spectrophotometer operating from 200 to 2500 nm. BaSO4 was used as a nonabsorbing reflectance reference. The generated reflectance-versus-wavelength data were used to estimate the band gap of the material by converting reflectance to absorbance data according to the Kubelka−Munk equation: α/S =(1 − R)^2/2R, where R is the reflectance and α and S are the absorption and scattering coefficients, respectively. Refer to Page 9029 Figure 9.

C. Stoumpos, C. Malliakas, and M. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorganic Chemistry 52, 9019‑9038 (2013). doi: 10.1021/ic401215x.

Extraction method: Manual entry
Entry added on: April 5, 2019, 2:29 p.m.
Entry added by: Xiaochen Du Duke University
Last updated on: April 12, 2022, 4:50 p.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 152 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Band gap (optical, diffuse reflectance) Verified
Origin: experimental (T = 298.0 K)
Band gap (optical, diffuse reflectance)

Crystal system: unknown

Band gap (optical, diffuse reflectance), eV
Fixed parameters:
  • temperature = 298.0 K
C. Stoumpos, C. Malliakas, and M. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorganic Chemistry 52, 9019‑9038 (2013). doi: 10.1021/ic401215x.
System description
Dimensionality: 3D
Sample type: powder

Starting materials: CH3NH3I, PbI2

Product: Black MAPbI3 Powder

Description: Place equimolar amounts of PbI2 and MAI in an agate mortar and ground carefully with a pestle until a visually homogeneous, black powder is obtained.

Method: Optical diffuse reflectance

Description: Measurements were performed at room temperature using a Shimadzu UV-3101 PC double-beam, double-monochromator spectrophotometer operating from 200 to 2500 nm. BaSO4 was used as a nonabsorbing reflectance reference. The generated reflectance-versus-wavelength data were used to estimate the band gap of the material by converting reflectance to absorbance data according to the Kubelka−Munk equation: α/S =(1 − R)^2/2R, where R is the reflectance and α and S are the absorption and scattering coefficients, respectively. Refer to Page 9029 Figure 9.

C. Stoumpos, C. Malliakas, and M. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorganic Chemistry 52, 9019‑9038 (2013). doi: 10.1021/ic401215x.

Extraction method: Manual entry
Entry added on: April 5, 2019, 2:36 p.m.
Entry added by: Xiaochen Du Duke University
Last updated on: April 12, 2022, 4:27 p.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 154 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Band gap (optical, diffuse reflectance) Verified
Origin: experimental (T = 298.0 K)
Band gap (optical, diffuse reflectance)

Crystal system: tetragonal

Band gap (optical, diffuse reflectance), eV
Fixed parameters:
  • temperature = 298.0 K
T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications, Journal of Materials Chemistry 1, 5628‑5641 (2013). doi: 10.1039/c3ta10518k.
System description
Dimensionality: 3D
Sample type: powder

Starting materials: Lead(II) acetate (Chemical Reagents, Sigma), aqueous HI, CH3NH2 (40% soluble in water, Merck)

Product: Black MAPbI3 Polycrystals

Description: Following method by [1], dissolve 2.5 g of lead(II) acetate in 10 ml of concentrated (57% by weight) aqueous HI contained in a pyrex test tube and heat in a water bath. Add an additional 2 ml of HI solution with 0.597 g of CH3NH2 to the solution. Filter the black precipitate upon cooling from 100 °C to 46 °C over 6 hours and dry (100 °C/10 hours). Maintain solution temperature above 40 °C. Black crystals up to 2 mm long were obtained by cooling the solution over 4 days. Crystallization proceeded most rapidly at approximately 70 °C.

Comment: Synthesis references: [1] A. Poglitsch and D. Weber, J. Chem. Phys., 1987, 87, 6373–6378. [2] J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale, 2011, 3, 4088–4093.

Method: Diffuse-reflectance UV-Vis absorption

Description: Absorption optical gap is 1.51 eV using diffuse reflectance UV-Vis spectra calculated using the optical absorption coefficient (\alpha) according to the Kubelka-Munk equation. Refer to Page 5637 Figure 11.

T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications, Journal of Materials Chemistry 1, 5628‑5641 (2013). doi: 10.1039/c3ta10518k.

Extraction method: Manual entry
Entry added on: April 5, 2019, 2:44 p.m.
Entry added by: Xiaochen Du Duke University
Last updated on: Aug. 31, 2022, 11:23 a.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 155 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!


License

All data is available under the Creative Commons license with attribution clause, described here and, in its full text, here.