Bis(butylammonium) methylammonium tin iodide: absorption spectrum

Absorption spectrum Verified
Origin: experimental (T = 298.0 K)
Space group: Ama2
C. C. Stoumpos, L. Mao, C. D. Malliakas, and M. G. Kanatzidis, Structure−Band Gap Relationships in Hexagonal Polytypes and Low- Dimensional Structures of Hybrid Tin Iodide Perovskites, Inorganic Chemistry 56, 56‑73 (2016). doi: 10.1021/acs.inorgchem.6b02764.
System description
Dimensionality: 2.5D n: 2
Sample type: bulk polycrystalline

Starting materials: distilled HI (aqueous 99.95%), H3PO2 (50% aqueous), SnCl2·2H2O (98%), CH3NH3Cl (98%), CH3(CH2)3NH2

Product: cherry-red rectangular plates

Description: Two-necked flask was charged with aqueous HI (6.8 mL, 7.58 M) and aqueous H3PO2 (1.7 mL, 9.14 M). Nitrogen was passed through the liquid to degass the solution. SnCl2•2H2O powder (2256 mg, 10 mmol) was dissolved in a solution of 57% (w/w) aqueous HI solution (20 mL, 152 mmol) and 50% aqueous H3PO2 (3.4 mL, 31 mmol) by boiling the solution and constantly stirring. This formed a bright yellow solution. Solid CH3(CH2)3NH2 (694 μL, 7 mmol) was neutralized with 57% (w/w) HI (5 mL38 mmol) via an ice bath. This resulted in a clear pale-yellow solution. CH3(CH2)3NH3I solution was added to SnI2 solution and produced a black precipitate. After the solution was boiled, stirring stopped, the solution cooled, and crystals formed for 2 hours.

Method: UV-vis absorption (diffuse reflectance)

Description: Diffuse-reflectance measurements were performed and collected at room temperature. A Shimadzu UV-3600 PC double-beam and double monochromator spectrophotometer (operating between 200 to 2500 nm) was used.BaSO4 was used as a nonabsorbing reflectance reference.

C. C. Stoumpos, L. Mao, C. D. Malliakas, and M. G. Kanatzidis, Structure−Band Gap Relationships in Hexagonal Polytypes and Low- Dimensional Structures of Hybrid Tin Iodide Perovskites, Inorganic Chemistry 56, 56‑73 (2016). doi: 10.1021/acs.inorgchem.6b02764.

Extraction method: Engauge Digitizer
Entry added on: July 13, 2020, 4:06 a.m.
Entry added by: Rebecca Lau Duke University
Last updated on: Aug. 3, 2022, 12:21 p.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 1318 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Absorption spectrum
Origin: experimental
Space group: Cmc21
Y. Li, H. Zhou, M. Xia, H. Chen, T. Wang, H. Gao, X. Sheng, Y. Han, Z. Chen, L. Dou, H. Zhu, and E. Shi, Phase-pure 2D tin halide perovskite thin flakes for stable lasing, Science Advances 9, eadh0517‑eadh0517 (2023). doi: 10.1126/sciadv.adh0517.
System description
Dimensionality: 2.5D n: 2
Sample type: single crystal

Starting materials: BAI, MAI, SnI2, HI, H3PO2

Product: Single crystals of 2D tin halide perovskites

Description: Single crystals synthesized by slow cooling method. Growth solution prepared with 0.43mmol BAI, 0.2mmol MAI, 0.59mmol SnI2, 1mL HI, and 0.1mL H3PO2 in a sealed glass vial and placed in a muffle furnace and heated until completely dissolved. Solution cooled to room temperature at a rate of 2°C/hour. Crystals were then dried and stored in a nitrogen glove box.

Method: UV-Vis absorption

Description: UV-vis absorption spectra collected by CRAIC 20/30PV Pro instrument. Transmission (T) and reflection (R) spectra collected at the same location. abs. = -log[T/(1-R)] used to transform relationship between absorption spectrum and wavelength.

Y. Li, H. Zhou, M. Xia, H. Chen, T. Wang, H. Gao, X. Sheng, Y. Han, Z. Chen, L. Dou, H. Zhu, and E. Shi, Phase-pure 2D tin halide perovskite thin flakes for stable lasing, Science Advances 9, eadh0517‑eadh0517 (2023). doi: 10.1126/sciadv.adh0517.

Extraction method: Manual from article
Entry added on: Dec. 12, 2023, 1:26 p.m.
Entry added by: Kelly Ma
Last updated on: Dec. 12, 2023, 1:30 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2448 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!


License

All data is available under the Creative Commons license with attribution clause, described here and, in its full text, here.