Starting materials: BAI, MAI, SnI2, HI, H3PO2
Product: Single crystals of 2D tin halide perovskites. Thin flakes were then exfoliated from the single crystals.
Description: Single crystals synthesized by slow cooling method. Growth solution prepared with 0.43mmol BAI, 0.2mmol MAI, 0.59mmol SnI2, 1mL HI, and 0.1mL H3PO2 in a sealed glass vial and placed in a muffle furnace and heated until completely dissolved. Solution cooled to room temperature at a rate of 2°C/hour. Crystals were then dried and stored in a nitrogen glove box.
Method: Photoluminescence spectroscopy
Description: Samples excited with mercury fluorescence light source (C-LHGFI HG LAMP). The flourescence filter cube contains a bandpass filter from 330-385 nm for excitation, a dichroic mirror with a cutoff wavelength of 400nm for light splitting, and a long pass filter of 410nm for emission. PL spectra were collected by Princeton Instruments spectrometer (HRS-300S).
Starting materials: BAI, MAI, SnI2, HI, H3PO2
Product: Single crystals of 2D tin halide perovskites. Thin flakes were then exfoliated from the single crystals.
Description: Single crystals synthesized by slow cooling method. Growth solution prepared with 0.43mmol BAI, 0.46 MAI, 0.59mmol SnI2, 1mL HI, and 0.1mL H3PO2 in a sealed glass vial and placed in a muffle furnace and heated until completely dissolved. Solution cooled to room temperature at a rate of 2°C/hour. Crystals were then dried and stored in a nitrogen glove box.
Method: Photoluminescence spectroscopy
Description: Samples excited with mercury fluorescence light source (C-LHGFI HG LAMP). The flourescence filter cube contains a bandpass filter from 330-385 nm for excitation, a dichroic mirror with a cutoff wavelength of 400nm for light splitting, and a long pass filter of 410nm for emission. PL spectra were collected by Princeton Instruments spectrometer (HRS-300S).