Crystal system: orthorhombic
a: | 8.8507 (±0.0006) Å |
b: | 51.957 (±0.004) Å |
c: | 8.7981 (±0.0005) Å |
α: | 90° |
β: | 90° |
γ: | 90° |
Starting materials: BAI, MAI, SnI2, HI, H3PO2
Product: Single crystals of 2D tin halide perovskites. Thin flakes were then exfoliated from the single crystals.
Description: Single crystals synthesized by slow cooling method. Growth solution prepared with 0.43mmol BAI, 0.46 MAI, 0.59mmol SnI2, 1mL HI, and 0.1mL H3PO2 in a sealed glass vial and placed in a muffle furnace and heated until completely dissolved. Solution cooled to room temperature at a rate of 2°C/hour. Crystals were then dried and stored in a nitrogen glove box.
Method: Single crystal X-ray diffraction
Description: Phase purity of as synthesized BA2MA(n-1)Sn(n)I(3n+1) crystals were confirmed by PXRD. No impurity signals observed. PXRD performed by Bruker D8 Advance instrument scanning at 0.02° per step with a copper target. All single crystals were analyzed using a Bruker AXS D8 Venture diffractometer with a high-intensity diamond Cu/Mo hybrid dual-microfocal x-ray tube. All data collecting and processing was completed using APEX4 software. Full matrix least squares against F2 method was used for further refinement of structures.
Starting materials: BAI, MAI, SnI2, HI, H3PO2
Product: Single crystals of 2D tin halide perovskites. Thin flakes were then exfoliated from the single crystals.
Description: Single crystals synthesized by slow cooling method. Growth solution prepared with 0.43mmol BAI, 0.46 MAI, 0.59mmol SnI2, 1mL HI, and 0.1mL H3PO2 in a sealed glass vial and placed in a muffle furnace and heated until completely dissolved. Solution cooled to room temperature at a rate of 2°C/hour. Crystals were then dried and stored in a nitrogen glove box.
Method: Photoluminescence spectroscopy
Description: Samples excited with mercury fluorescence light source (C-LHGFI HG LAMP). The flourescence filter cube contains a bandpass filter from 330-385 nm for excitation, a dichroic mirror with a cutoff wavelength of 400nm for light splitting, and a long pass filter of 410nm for emission. PL spectra were collected by Princeton Instruments spectrometer (HRS-300S).
Starting materials: BAI, MAI, SnI2, HI, H3PO2
Product: Single crystals of 2D tin halide perovskites
Description: Single crystals synthesized by slow cooling method. Growth solution prepared with 0.43mmol BAI, 0.46 MAI, 0.59mmol SnI2, 1mL HI, and 0.1mL H3PO2 in a sealed glass vial and placed in a muffle furnace and heated until completely dissolved. Solution cooled to room temperature at a rate of 2°C/hour. Crystals were then dried and stored in a nitrogen glove box.
Method: UV-Vis absorption
Description: UV-vis absorption spectra collected by CRAIC 20/30PV Pro instrument. Transmission (T) and reflection (R) spectra collected at the same location. abs. = -log[T/(1-R)] used to transform relationship between absorption spectrum and wavelength.
Starting materials: BAI, MAI, SnI2, HI, H3PO2
Product: Single crystals of 2D tin halide perovskites. Thin flakes were then exfoliated from the single crystals.
Description: Single crystals synthesized by slow cooling method. Growth solution prepared with 0.43mmol BAI, 0.46 MAI, 0.59mmol SnI2, 1mL HI, and 0.1mL H3PO2 in a sealed glass vial and placed in a muffle furnace and heated until completely dissolved. Solution cooled to room temperature at a rate of 2°C/hour. Crystals were then dried and stored in a nitrogen glove box.
Method: Powder X-ray diffraction (PXRD)
Description: Phase purity of as synthesized BA2MA(n-1)Sn(n)I(3n+1) crystals were confirmed by PXRD. No impurity signals observed. PXRD performed by Bruker D8 Advance instrument scanning at 0.02° per step with a copper target. All single crystals were analyzed using a Bruker AXS D8 Venture diffractometer with a high-intensity diamond Cu/Mo hybrid dual-microfocal x-ray tube. All data collecting and processing was completed using APEX4 software. Full matrix least squares against F2 method was used for further refinement of structures.
Crystal system: unknown
Exciton binding energy, meV |
---|
Starting materials: BAI, MAI, SnI2, HI, H3PO2
Product: Single crystals of 2D tin halide perovskites. Thin flakes were then exfoliated from the single crystals.
Description: Single crystals synthesized by slow cooling method. Growth solution prepared with 0.43mmol BAI, 0.46 MAI, 0.59mmol SnI2, 1mL HI, and 0.1mL H3PO2 in a sealed glass vial and placed in a muffle furnace and heated until completely dissolved. Solution cooled to room temperature at a rate of 2°C/hour. Crystals were then dried and stored in a nitrogen glove box.
Method: Arrhenius formula fitting
Description: Temperature dependent PL measurements were conducted by combining a Linkam THMS600 stage with the Witec system. Air was purged from stage chamber with dry nitrogen to remove water and oxygen. Cooling rate set to 20 degrees Celsius/min. 50x objective lens used for signal collecting. Exciton binding energies extracted from Arrhenius formula fitting from the integrated PL intensity.