Bis(hexylammonium) lead iodide

Chemical Formula: C12H32N2PbI4
IUPAC: bis(hexyl-1-aminium) lead(II) iodide
Alternate Names: bis(hexyl-1-aminium) tetraiodoplumbate(II), HA2PbI4, (C6H13NH3)2PbI4, (C6H16N)2PbI4, bis(hexylaminium) lead (II) iodide, bis(hexylaminium) tetraiodoplumbate(II)
Organic: C6H16N
Inorganic: PbI4, Lead iodide
Dimensionality: 2D n: 1
Formal Stoichiometry: C : 12 , H : 32 , N : 2 , Pb : 1 , I : 4
Atomic structure Verified
Origin: experimental (T = 300.0 K, 200.0 K, 100.0 K, 50.0 K, 12.0 K, 20.0 K, 30.0 K, 50.0 K, 75.0 K, 100.0 K, 125.0 K, 150.0 K, 173.0 K, 200.0 K, 250.0 K, 300.0 K)
Space group: P2(1)/a
Lattice parameters #1

Crystal system: monoclinic

a:8.693 (±0.005) Å
b:8.911 (±0.005) Å
c:16.338 (±0.01) Å
α:90°
β:94.85 (±0.03)°
γ:90°
Fixed parameters:
  • temperature = 300.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #2

Crystal system: monoclinic

a:8.628 (±0.004) Å
b:8.854 (±0.004) Å
c:16.107 (±0.007) Å
α:90°
β:92.27 (±0.03)°
γ:90°
Fixed parameters:
  • temperature = 200.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #3

Crystal system: monoclinic

a:8.622 (±0.004) Å
b:8.829 (±0.004) Å
c:16.108 (±0.007) Å
α:90°
β:92.25 (±0.02)°
γ:90°
Fixed parameters:
  • temperature = 100.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #4

Crystal system: monoclinic

a:8.617 (±0.003) Å
b:8.818 (±0.003) Å
c:16.085 (±0.004) Å
α:90°
β:92.31 (±0.02)°
γ:90°
Fixed parameters:
  • temperature = 50.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #5

Crystal system: monoclinic

a:8.62 (±0.003) Å
b:8.81 (±0.003) Å
c:16.068 (±0.005) Å
α:90°
β:92.29 (±0.03)°
γ:90°
Fixed parameters:
  • temperature = 12.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #6

Crystal system: monoclinic

a:8.614 (±0.002) Å
b:8.811 (±0.003) Å
c:16.064 (±0.004) Å
α:90°
β:92.28 (±0.02)°
γ:90°
Fixed parameters:
  • temperature = 20.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #7

Crystal system: monoclinic

a:8.621 (±0.003) Å
b:8.818 (±0.003) Å
c:16.077 (±0.006) Å
α:90°
β:92.26 (±0.02)°
γ:90°
Fixed parameters:
  • temperature = 30.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #8

Crystal system: monoclinic

a:8.618 (±0.003) Å
b:8.82 (±0.003) Å
c:16.082 (±0.004) Å
α:90°
β:92.3 (±0.2)°
γ:90°
Fixed parameters:
  • temperature = 50.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #9

Crystal system: monoclinic

a:8.618 (±0.004) Å
b:8.821 (±0.004) Å
c:16.09 (±0.07) Å
α:90°
β:92.26 (±0.02)°
γ:90°
Fixed parameters:
  • temperature = 75.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #10

Crystal system: monoclinic

a:8.621 (±0.004) Å
b:8.829 (±0.004) Å
c:16.106 (±0.007) Å
α:90°
β:92.24 (±0.02)°
γ:90°
Fixed parameters:
  • temperature = 100.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #11

Crystal system: monoclinic

a:8.625 (±0.004) Å
b:8.836 (±0.004) Å
c:16.113 (±0.007) Å
α:90°
β:92.24 (±0.02)°
γ:90°
Fixed parameters:
  • temperature = 125.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #12

Crystal system: monoclinic

a:8.627 (±0.003) Å
b:8.845 (±0.004) Å
c:16.111 (±0.007) Å
α:90°
β:92.19 (±0.02)°
γ:90°
Fixed parameters:
  • temperature = 150.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #13

Crystal system: monoclinic

a:8.636 (±0.003) Å
b:8.859 (±0.004) Å
c:16.117 (±0.007) Å
α:90°
β:92.18 (±0.02)°
γ:90°
Fixed parameters:
  • temperature = 173.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #14

Crystal system: monoclinic

a:8.652 (±0.004) Å
b:8.877 (±0.004) Å
c:16.129 (±0.007) Å
α:90°
β:92.12 (±0.02)°
γ:90°
Fixed parameters:
  • temperature = 200.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #15

Crystal system: monoclinic

a:8.678 (±0.004) Å
b:8.895 (±0.004) Å
c:16.264 (±0.008) Å
α:90°
β:93.56 (±0.03)°
γ:90°
Fixed parameters:
  • temperature = 250.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #16

Crystal system: monoclinic

a:8.702 (±0.004) Å
b:8.92 (±0.05) Å
c:16.345 (±0.009) Å
α:90°
β:94.93 (±0.03)°
γ:90°
Fixed parameters:
  • temperature = 300.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
System description
Dimensionality: 2D n: 1
Sample type: powder

Starting materials: HI, HA (C6H13NH3), Et2O, PbI2

Product: Powder of (C6H13NH3)2PbI4

Description: Prepare hexylammonium iodide salts via neutralization of HI with HA. Remove unreacted species by evaporation. Purify product by recrystallization in minimal diethyl ether/excess hexane and isolate via vacuum filtration. Prepare films by spin-coating or drop-casting solutions (prepared by dissolving HAI and PbI2 powders at a 2.5:1 molar ratio in a 1:0.34 volume ratio mixture of THF and methanol). To prepare powder for XRD, drop-cast thin film from 200 mg/mL solutions and anneal at 70 °C for 15 min.

Method: Powder X-ray diffraction

Description: Bruker X-ray D8 Advance diffractometer with Cu Kα1,2 radiation (λ = 1.541 Å). Spectra were collected with an angular range of 5 < 2θ < 60° and step size of 0.01022 ° over 60 minutes. Rietveld analysis was carried out using the TOPAS program. Low-temperature measurements were made on cooling between 300−12K using an Oxford Cyrosytem PheniX stage.

E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.

Extraction method: Manual entry
Entry added on: Aug. 14, 2019, 3:12 p.m.
Entry added by: Xiaochen Du Duke University
Last updated on: April 28, 2022, 3:28 p.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 483 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

 

Atomic coordinates


Band gap (optical, diffuse reflectance)

See all entries for this property (2 total)

estimated from absorption edge
Origin: experimental (T = 298.0 K)
Space group: P b c a
Band gap (optical, diffuse reflectance)

Crystal system: orthorhombic

Band gap (optical, diffuse reflectance), eV
Fixed parameters:
  • temperature = 298.0 K
I. Spanopoulos, I. Hadar, W. Ke, Q. Tu, M. Chen, H. Tsai, Y. He, G. Shekhawat, V. P. Dravid, M. R. Wasielewski, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, Uniaxial Expansion of the 2D Ruddlesden−Popper Perovskite Family for Improved Environmental Stability, Journal of the American Chemical Society 141, 5518‑5534 (2019). doi: 10.1021/jacs.9b01327.
System description
Dimensionality: 2D n: 1
Sample type: bulk polycrystalline

Starting materials: Lead(II) oxide (PbO, <10 μm, ReagentPlus®, ≥99.9% trace metals basis ), HI (57 wt. % in H2O), pentylamine 99%, H3PO2 (50 wt. % in H2O)

Product: orange plate-like crystals

Description: PbO powder (2232 mg, 10 mmol) was dissolved in 57% w/w aqueous HI solution (16 mL) in a 50 mL glass flask by heating to boiling under stirring. A bright yellow solution resulted. 1159 μL (10 mmol) of pentylamine in 50% aqueous H3PO2 (2 mL) was slowly added. The solution was slowly cooled to room temperature.

Method: UV-vis absorption (diffused reflectance)

Description: Optical diffuse-reflectance measurements were conducted at room temperature. A Shimadzu UV-2600 PC double-beam, double-monochromator spectrophotometer was operating from 200 to 2500 nm. BaS4 was used as a non-absorbing reflectance reference. Reflectance v. wavelength data was collected and used to estimate the band gap by converting reflectance to absorbance via the Kubelka-Munk equation: α/S = (1-R)^{2}/2R. Band gap energy was calculated based on the absorption edge and exciton peak of the optical absorption spectra.

I. Spanopoulos, I. Hadar, W. Ke, Q. Tu, M. Chen, H. Tsai, Y. He, G. Shekhawat, V. P. Dravid, M. R. Wasielewski, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, Uniaxial Expansion of the 2D Ruddlesden−Popper Perovskite Family for Improved Environmental Stability, Journal of the American Chemical Society 141, 5518‑5534 (2019). doi: 10.1021/jacs.9b01327.

Extraction method: Manually extracted from a publication
Entry added on: July 17, 2020, 6:33 a.m.
Entry added by: Rebecca Lau Duke University
Last updated on: Aug. 24, 2023, 12:46 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 1412 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Photoluminescence peak position

See all entries for this property (2 total)

Origin: experimental (T = 298.0 K)
Space group: P b c a
Photoluminescence peak position

Crystal system: orthorhombic

Photoluminescence peak position, eV
Fixed parameters:
  • temperature = 298.0 K
I. Spanopoulos, I. Hadar, W. Ke, Q. Tu, M. Chen, H. Tsai, Y. He, G. Shekhawat, V. P. Dravid, M. R. Wasielewski, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, Uniaxial Expansion of the 2D Ruddlesden−Popper Perovskite Family for Improved Environmental Stability, Journal of the American Chemical Society 141, 5518‑5534 (2019). doi: 10.1021/jacs.9b01327.
System description
Dimensionality: 2D n: 1
Sample type: bulk polycrystalline

Starting materials: Lead(II) oxide (PbO, <10 μm, ReagentPlus®, ≥99.9% trace metals basis ), HI (57 wt. % in H2O), hexylamine 99%, H3PO2 (50 wt. % in H2O)

Product: orange plate-like crystals

Description: PbO powder (2232 mg, 10 mmol) was dissolved in 57% w/w aqueous HI solution (16 mL) in a 50 mL glass flask by heating to boiling under stirring. A bright yellow solution resulted. 1000 μL (7.52 mmol) of hexylamine in 50% aqueous H3PO2 (2 mL) was slowly added. The solution was slowly cooled to room temperature.

Method: Photoluminescence microscopy

Description: Data was collected with a Horiba LabRam Evolution high-resolution confocal Raman microscope spectrometer (600g/mm diffraction grating, with a diode continuous wave laser (473 nm, 25 mW) and a Synapse charge-coupled device camera. PL energy was calculated by the PL peak position of the optical emission spectra.

I. Spanopoulos, I. Hadar, W. Ke, Q. Tu, M. Chen, H. Tsai, Y. He, G. Shekhawat, V. P. Dravid, M. R. Wasielewski, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, Uniaxial Expansion of the 2D Ruddlesden−Popper Perovskite Family for Improved Environmental Stability, Journal of the American Chemical Society 141, 5518‑5534 (2019). doi: 10.1021/jacs.9b01327.

Extraction method: Manually extracted from a publication
Entry added on: July 17, 2020, 6:39 a.m.
Entry added by: Rebecca Lau Duke University
Last updated on: Aug. 24, 2023, 12:48 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 1415 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Absorption spectrum Verified

See all entries for this property (2 total)

Origin: experimental (T = 298.0 K)
Space group: P b c a
I. Spanopoulos, I. Hadar, W. Ke, Q. Tu, M. Chen, H. Tsai, Y. He, G. Shekhawat, V. P. Dravid, M. R. Wasielewski, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, Uniaxial Expansion of the 2D Ruddlesden−Popper Perovskite Family for Improved Environmental Stability, Journal of the American Chemical Society 141, 5518‑5534 (2019). doi: 10.1021/jacs.9b01327.
System description
Dimensionality: 2D n: 1
Sample type: bulk polycrystalline

Starting materials: Lead(II) oxide (PbO, <10 μm, ReagentPlus®, ≥99.9% trace metals basis ), HI (57 wt. % in H2O), hexylamine 99%, H3PO2 (50 wt. % in H2O)

Product: orange plate-like crystals

Description: PbO powder (2232 mg, 10 mmol) was dissolved in 57% w/w aqueous HI solution (16 mL) in a 50 mL glass flask by heating to boiling under stirring. A bright yellow solution resulted. 1000 μL (7.52 mmol) of hexylamine in 50% aqueous H3PO2 (2 mL) was slowly added. The solution was slowly cooled to room temperature.

Comment: Note that the n=1 C6N1 compound is specifically mentioned as crystallizing in an orthorhombic spacegroup in the reference, with associated PXRD data shown in Figure S10. In contrast, the n>1 C6N1 compounds crystallize in a monoclinic spacegroup.

Method: UV-vis absorption (diffused reflectance)

Description: Optical diffuse-reflectance measurements were conducted at room temperature. A Shimadzu UV-2600 PC double-beam, double-monochromator spectrophotometer was operating from 200 to 2500 nm. BaS4 was used as a non-absorbing reflectance reference. Reflectance v. wavelength data was collected and used to estimate the band gap by converting reflectance to absorbance via the Kubelka-Munk equation: α/S = (1-R)^{2}/2R.

I. Spanopoulos, I. Hadar, W. Ke, Q. Tu, M. Chen, H. Tsai, Y. He, G. Shekhawat, V. P. Dravid, M. R. Wasielewski, A. D. Mohite, C. C. Stoumpos, and M. G. Kanatzidis, Uniaxial Expansion of the 2D Ruddlesden−Popper Perovskite Family for Improved Environmental Stability, Journal of the American Chemical Society 141, 5518‑5534 (2019). doi: 10.1021/jacs.9b01327.

Extraction method: Engauge Digitizer
Entry added on: July 17, 2020, 6:53 a.m.
Entry added by: Rebecca Lau Duke University
Last updated on: Aug. 24, 2023, 3:46 p.m.
Last updated by: Volker Blum Duke University
Data correctness verified by:
  • Volker Blum Duke University

Download data
Data set ID: 1417 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!


License

All data is available under the Creative Commons license with attribution clause, described here and, in its full text, here.