Bis(Butylammonium) lead iodide

Chemical Formula: C8H24N2PbI4
IUPAC: bis(butane-1-aminium) lead(II) iodide
Alternate Names: bis(butane-1-aminium) tetraiodoplumbate(II), (C4H9NH3)2PbI4, (C4H12N)2PbI4, BA2PbI4, (BA)2PbI4
Organic: C4H12N
Inorganic: PbI4, Lead iodide
Dimensionality: 2D n: 1
Formal Stoichiometry: C : 8 , H : 24 , N : 2 , Pb : 1 , I : 4
Atomic structure Verified

See all entries for this property (3 total)

Origin: experimental (T = 298.0 K)
Space group: P b c a
Lattice parameters

Crystal system: orthorhombic

a:8.8632 (±0.0021) Å
b:8.6816 (±0.0008) Å
c:27.57 (±0.002) Å
α:90°
β:90°
γ:90°
Fixed parameters:
  • temperature = 298.0 K
D. Mitzi, Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb), Chem. Mater. 8, 791‑800 (1996). doi: 10.1021/cm9505097.
System description
Dimensionality: 2D n: 1
Sample type: single crystal

Starting materials: PbI2, HI, C4H9NH2

Product: Orange-yellow sheetlike crystals

Description: Grow the crystals under slowly-cooled aqueous hydriodic acid solutions. Perform all synthetic steps and crystal manipulations after synthesis in an inert atmosphere to prevent oxidation. Dissolve 0.534 g (1.16 mmol) of PbI2 in 2 mL of concentrated (57 wt %) aqueous HI solvent under flowing argon at 90 °C. In a separate tube, dissolve 2.32 mmol of (C4H9NH2).HI in 3 mL of concentrated HI solution and add to the metal halide solution. Ramp the solution temperature at 2 °C/h from 90 to -10 °C, filter the crystals formed under argon or nitrogen and dry in argon at 80 °C.

Method: Single crystal X-ray diffraction

Description: Select suitable single crystals in an argon-filled drybox (<1 ppm O2 and H2O) under a microscope and seal in quartz capillaries. Collect data at room temperature on an Enraf-Nonius CAD4 diffractometer with graphite-monochromatized Mo Ka radiation. Obtain unitcell parameters and the crystal orientation matrix by a least-squares fit of 25 reflections with 18° < 2θ < 30°. Monitor intensity control reflections every 5000s during the data collection. Little to no degradation was observed for the compounds. Use the NRCVAX 386 PC version program for structural solution and refinement.

D. Mitzi, Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb), Chem. Mater. 8, 791‑800 (1996). doi: 10.1021/cm9505097.

Extraction method: Manual entry, Table 1
Entry added on: April 15, 2019, 9:54 p.m.
Entry added by: Xiaochen Du Duke University
Last updated on: June 22, 2022, 10:11 p.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 233 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

 

Atomic coordinates


Band gap (optical, diffuse reflectance)
Origin: experimental (T = 298.0 K)
Band gap (optical, diffuse reflectance)

Crystal system: orthorhombic

Band gap (optical, diffuse reflectance), eV
Fixed parameters:
  • temperature = 298.0 K
L. G. Bonato, J. C. Germino, W. X. Coelho Oliveira, R. Kamat, J. Xu, C. J. Tassone, S. D. Stranks, M. F. Toney, and A. F. Nogueira, Synthesis of Polycrystalline Ruddlesden–Popper Organic Lead Halides and Their Growth Dynamics, Chemistry of Materials 31, 9472‑9479 (2019). doi: 10.1021/acs.chemmater.9b03439.
System description
Dimensionality: 2D n: 1
Sample type: powder
Related data
This data set is directly linked to other data sets: See all related data

Starting materials: PbI2, toluene, butyric acid, butylamine, butylammonium iodide

Product: Powder film on glass substrate

Description: PbI2, butyric acid, toluene, and butylamine were mixed in a capped flask. Separately, butylammonium iodide was dissolved in toluene with butylamine and butyric acid. The two solutions were combined and stirred until an insoluble yellow solid precipitated. The solid was removed by centrifuging at 6000 rpm for 3 minutes. The yellow solid was redispersed in toluene and centrifuged a second time, to produce the final products. The paintlike paste was then deposited on a glass substrate. A Pasteur pipette was used to spread the paste over the surface and was then allowed to dry.

Method: Diffuse reflectance spectra

Description: Diffuse reflectance spectra were measured in a Shimadzu UV 2450 instrument. A Ba2SO4 powder palette was the reference used. The reflectance was converted to absorbance.

L. G. Bonato, J. C. Germino, W. X. Coelho Oliveira, R. Kamat, J. Xu, C. J. Tassone, S. D. Stranks, M. F. Toney, and A. F. Nogueira, Synthesis of Polycrystalline Ruddlesden–Popper Organic Lead Halides and Their Growth Dynamics, Chemistry of Materials 31, 9472‑9479 (2019). doi: 10.1021/acs.chemmater.9b03439.

Extraction method: manual extraction
Entry added on: April 5, 2022, 3:26 p.m.
Entry added by: Rayan C Duke University
Last updated on: April 7, 2022, 1:22 p.m.
Last updated by: Rayan C Duke University

Download data
Data set ID: 1949 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Photoluminescence peak position

See all entries for this property (2 total)

Origin: experimental (T = 298.0 K)
Photoluminescence peak position

Crystal system: orthorhombic

Photoluminescence peak position, nm
Fixed parameters:
  • temperature = 298.0 K
L. G. Bonato, J. C. Germino, W. X. Coelho Oliveira, R. Kamat, J. Xu, C. J. Tassone, S. D. Stranks, M. F. Toney, and A. F. Nogueira, Synthesis of Polycrystalline Ruddlesden–Popper Organic Lead Halides and Their Growth Dynamics, Chemistry of Materials 31, 9472‑9479 (2019). doi: 10.1021/acs.chemmater.9b03439.
System description
Dimensionality: 2D n: 1
Sample type: powder
Related data
This data set is directly linked to other data sets: See all related data

Starting materials: PbI2, toluene, butyric acid, butylamine, butylammonium iodide

Product: Powder film on glass substrate

Description: PbI2, butyric acid, toluene, and butylamine were mixed in a capped flask. Separately, butylammonium iodide was dissolved in toluene with butylamine and butyric acid. The two solutions were combined and stirred until an insoluble yellow solid precipitated. The solid was removed by centrifuging at 6000 rpm for 3 minutes. The yellow solid was redispersed in toluene and centrifuged a second time, to produce the final products. The paintlike paste was then deposited on a glass substrate. A Pasteur pipette was used to spread the paste over the surface and was then allowed to dry.

Method: Photoluminescence spectra

Description: A Horiba-Jobin Yvon Fluorolog-3 instrument was used on the powder films to measure photoluminescence spectra. Excitation was perpendicular to the sample and emission was collected at an angle of ~15 degrees. The data was corrected according to the lamp and detector details by using algorithms from the equipment software.

L. G. Bonato, J. C. Germino, W. X. Coelho Oliveira, R. Kamat, J. Xu, C. J. Tassone, S. D. Stranks, M. F. Toney, and A. F. Nogueira, Synthesis of Polycrystalline Ruddlesden–Popper Organic Lead Halides and Their Growth Dynamics, Chemistry of Materials 31, 9472‑9479 (2019). doi: 10.1021/acs.chemmater.9b03439.

Extraction method: Engauge digitizer
Entry added on: April 5, 2022, 3:42 p.m.
Entry added by: Rayan C Duke University
Last updated on: April 7, 2022, 1:22 p.m.
Last updated by: Rayan C Duke University

Download data
Data set ID: 1950 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Absorption spectrum

See all entries for this property (3 total)

Origin: experimental
T. Sheikh, V. Nawale, N. Pathooor, C. Phadnis, A. Chowdhury, and A. Nag, Molecular Intercalation and Electronic Two Dimensionality in Layered Hybrid Perovskites, Angewandte Chemie International Edition 59, 11653‑11659 (2020). doi: https://doi.org/10.1002/anie.202003509.
System description
Dimensionality: 2D n: 1
Sample type: single crystal

Starting materials: lead oxide (10 mmol), hydriodic acid (10 mL), hypophosphorous acid (1.7 mL ), C4H9NH3I

Product: (BA)2PbI4

Description: Single crystals of (BA)2PbI4 were synthesized in a method called acid precipitation. Through constant stirring and heating, lead oxide (10 mmol) was dissolved in a solution that contained hydriodic acid (10 mL) and hypophosphorous acid (1.7 mL). After, C4H9NH3I was added to the mixture, causing the bright yellow solution to change to an orange color precipitate. Continuous heating of the mixture followed until the precipitate was fully dissolved, forming orange crystals at room temperature. The crystals were obtained via filtration and bathed in diethyl ether.

Method: UV-visible absorption

Description: Optical diffuse-reflectance spectra were collected at room temperature using a Shimadzu UV-3600 plus UV-VIS-NIR spectrophotometer. The reflectance spectra were converted to absorbance by using the Kubelka-Munk transformation; (α/S = (1 − R)^2/2R); α is the absorption coefficient, S is the scattering coefficient, and R is the reflectance.

T. Sheikh, V. Nawale, N. Pathooor, C. Phadnis, A. Chowdhury, and A. Nag, Molecular Intercalation and Electronic Two Dimensionality in Layered Hybrid Perovskites, Angewandte Chemie International Edition 59, 11653‑11659 (2020). doi: https://doi.org/10.1002/anie.202003509.

Extraction method: Engauge Digitizer
Entry added on: April 18, 2022, 3:54 p.m.
Entry added by: Rayan C Duke University
Last updated on: April 18, 2022, 3:56 p.m.
Last updated by: Rayan C Duke University

Download data
Data set ID: 1962 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Band gap (fundamental)

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: 2D n: 1
Sample type: film

Starting materials: PbO, HI, H3PO2, butylamine

Product: spin-coated thin film, high crystallinity

Description: For BA2PbI4 (I): First step: BAPbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. For BA2PbI4 (I), solution was cooled to ~80 deg C, upon which crystals began to form and left undisturbed for three days. Afterwards, crystals were slowly cooled to room temperature (rate: 2 deg C/hr). Some crystallites in the film were found in the RT (I) phase and others found in the low-temperature (II) phase. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 7, 2023, 11:26 a.m.
Entry added by: Kelly Ma
Last updated on: Aug. 7, 2023, 11:29 a.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2366 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Exciton binding energy

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: 2D n: 1
Sample type: film

Starting materials: PbO, HI, H3PO2, butylamine

Product: spin-coated thin film, high crystallinity

Description: For BA2PbI4 (I): First step: BAPbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. For BA2PbI4 (I), solution was cooled to ~80 deg C, upon which crystals began to form and left undisturbed for three days. Afterwards, crystals were slowly cooled to room temperature (rate: 2 deg C/hr). Some crystallites in the film were found in the RT (I) phase and others found in the low-temperature (II) phase. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 7, 2023, 11:29 a.m.
Entry added by: Kelly Ma
Last updated on: Aug. 7, 2023, 11:29 a.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2367 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Exciton energy

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: 2D n: 1
Sample type: film

Starting materials: PbO, HI, H3PO2, butylamine

Product: spin-coated thin film, high crystallinity

Description: For BA2PbI4 (I): First step: BAPbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. For BA2PbI4 (I), solution was cooled to ~80 deg C, upon which crystals began to form and left undisturbed for three days. Afterwards, crystals were slowly cooled to room temperature (rate: 2 deg C/hr). Some crystallites in the film were found in the RT (I) phase and others found in the low-temperature (II) phase. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 7, 2023, 11:30 a.m.
Entry added by: Kelly Ma
Last updated on: Aug. 7, 2023, 11:30 a.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2368 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Photoluminescence Verified

See all entries for this property (4 total)

Origin: experimental (T = 298.0 K)
Space group: P b c a
D. Mitzi, Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb), Chem. Mater. 8, 791‑800 (1996). doi: 10.1021/cm9505097.
System description
Dimensionality: 2D n: 1
Sample type: single crystal
Related data
This data set is directly linked to other data sets: See all related data

Starting materials: PbI2, HI, C4H9NH2

Product: Orange-yellow sheetlike crystals

Description: Grow the crystals under slowly-cooled aqueous hydriodic acid solutions. Perform all synthetic steps and crystal manipulations after synthesis in an inert atmosphere to prevent oxidation. Dissolve 0.534 g (1.16 mmol) of PbI2 in 2 mL of concentrated (57 wt %) aqueous HI solvent under flowing argon at 90 °C. In a separate tube, dissolve 2.32 mmol of (C4H9NH2).HI in 3 mL of concentrated HI solution and add to the metal halide solution. Ramp the solution temperature at 2 °C/h from 90 to -10 °C, filter the crystals formed under argon or nitrogen and dry in argon at 80 °C.

Method: Photoluminescence

Description: Collect the photoluminescence spectra within several hours after the crystals were synthesized, and maintain the samples in an argon-filled cell during measurement to prevent degradation. The photoluminescence spectra were excited by 457.9 nm (2.71 eV) light from an argon ion laser. This light was strongly absorbed by each sample, ensuring that the observed luminescence came from the front side of the samples. The excitation density was below 1 W cm-2. Refer to Page 794 for details.

D. Mitzi, Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb), Chem. Mater. 8, 791‑800 (1996). doi: 10.1021/cm9505097.

Extraction method: Engauge Digitizer, Figure 5
Entry added on: March 14, 2019, 4:18 p.m.
Entry added by: Xiaochen Du Duke University
Last updated on: June 22, 2022, 9:51 p.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 18 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!


License

All data is available under the Creative Commons license with attribution clause, described here and, in its full text, here.