K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
Bis(phenylethylammonium) lead iodide: band gap (fundamental)

See all entries for this property (3 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: triclinic

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEAI salt, PbI2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DFF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with inerdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: May 30, 2023, 12:49 a.m.
Entry added by: Volker Blum Duke University
Last updated on: May 31, 2023, 3:26 p.m.
Last updated by: Volker Blum Duke University

Download data
Data set ID: 2299 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(phenylethylammonium) lead iodide: exciton binding energy

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: triclinic

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEAI salt, PbI2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DFF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with inerdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: May 31, 2023, 3:23 p.m.
Entry added by: Volker Blum Duke University
Last updated on: May 31, 2023, 3:23 p.m.
Last updated by: Volker Blum Duke University

Download data
Data set ID: 2311 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

See all entries for this property (3 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: triclinic

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEAI salt, PbI2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DFF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with inerdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Optical absorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: May 31, 2023, 3:30 p.m.
Entry added by: Volker Blum Duke University
Last updated on: May 31, 2023, 3:30 p.m.
Last updated by: Volker Blum Duke University

Download data
Data set ID: 2312 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(ethanolammonium) lead iodide: band gap (fundamental) Verified
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, ethanolamine

Product: spin-coated thin film, high crystallinity and strong exciton absorption

Description: First step: EOA2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 8:22 p.m.
Entry added by: Kelly Ma
Last updated on: June 9, 2023, 1:23 p.m.
Last updated by: Volker Blum Duke University
Data correctness verified by:
  • Volker Blum Duke University

Download data
Data set ID: 2313 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(ethanolammonium) lead iodide: exciton binding energy

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, ethanolamine

Product: spin-coated thin film, high crystallinity and strong exciton absorption

Description: First step: EOA2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 8:27 p.m.
Entry added by: Kelly Ma
Last updated on: June 14, 2023, 4:09 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2314 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, ethanolamine

Product: spin-coated thin film, high crystallinity and strong exciton absorption

Description: First step: EOA2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 8:37 p.m.
Entry added by: Kelly Ma
Last updated on: June 14, 2023, 4:10 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2315 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

1,6-diaminohexane lead iodide: band gap (fundamental)
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, hexamethylenediamine

Product: spin-coated thin film, high crystallinity

Description: First step: HDAPbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 9:17 p.m.
Entry added by: Kelly Ma
Last updated on: June 14, 2023, 4:13 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2316 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

1,6-diaminohexane lead iodide: exciton binding energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, hexamethylenediamine

Product: spin-coated thin film, high crystallinity

Description: First step: HDAPbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 9:19 p.m.
Entry added by: Kelly Ma
Last updated on: June 14, 2023, 4:41 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2317 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, hexamethylenediamine

Product: spin-coated thin film, high crystallinity

Description: First step: HDAPbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 9:21 p.m.
Entry added by: Kelly Ma
Last updated on: June 14, 2023, 4:42 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2318 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

butylammonium tin iodide: band gap (fundamental)
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: BAI salt, SnI2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 9:52 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 10:25 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2319 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

butylammonium tin iodide: exciton binding energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: BAI salt, SnI2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 9:54 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 10:24 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2320 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

butylammonium tin iodide: Exciton energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: BAI salt, SnI2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 9:55 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 10:25 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2321 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(phenethylammonium) tin iodide: band gap (fundamental)

See all entries for this property (3 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEAI salt, SnI2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 10:23 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 10:41 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2322 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(phenethylammonium) tin iodide: exciton binding energy

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEAI salt, SnI2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 10:26 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 10:40 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2323 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEAI salt, SnI2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 10:27 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 10:40 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2324 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(phenethylammonium) tin bromide: band gap (fundamental)
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, SnBr2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with inerdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 10:39 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 10:40 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2325 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(phenethylammonium) tin bromide: exciton binding energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, SnBr2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with inerdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 10:43 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 10:43 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2326 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, SnBr2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with inerdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 10:45 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 10:45 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2327 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(butylammonium) lead bromide: band gap (fundamental)
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: BABr salt, PbBr2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 11:23 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 11:23 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2328 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(butylammonium) lead bromide: exciton binding energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: BABr salt, PbBr2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 11:24 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 11:24 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2329 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: BABr salt, PbBr2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 11:25 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 11:25 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2330 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 11:28 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 11:28 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2331 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 11:30 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 11:30 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2332 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 11:31 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 11:31 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2333 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEACl salt, PbCl2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with inerdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 11:34 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 11:34 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2334 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEACl salt, PbCl2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with inerdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 11:36 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 11:36 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2335 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEACl salt, PbCl2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with inerdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 11:37 p.m.
Entry added by: Kelly Ma
Last updated on: June 8, 2023, 11:37 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2336 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, butylamine, MACl

Product: spin-coated thin film, high crystallinity

Description: First step: BA2MA2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 5 mmol of MACl added and dissolved. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 11:41 p.m.
Entry added by: Kelly Ma
Last updated on: June 14, 2023, 4:55 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2337 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, butylamine, MACl

Product: spin-coated thin film, high crystallinity

Description: First step: BA2MA2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 5 mmol of MACl added and dissolved. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 11:42 p.m.
Entry added by: Kelly Ma
Last updated on: June 26, 2023, 12:02 a.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2338 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, butylamine, MACl

Product: spin-coated thin film, high crystallinity

Description: First step: BA2MA2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 5 mmol of MACl added and dissolved. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 8, 2023, 11:43 p.m.
Entry added by: Kelly Ma
Last updated on: June 26, 2023, 12:02 a.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2339 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, 2-thiopheneethylamine

Product: spin-coated thin film

Description: First step: TEA2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 15, 2023, 9:55 p.m.
Entry added by: Kelly Ma
Last updated on: June 15, 2023, 9:55 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2340 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, 2-thiopheneethylamine

Product: spin-coated thin film

Description: First step: TEA2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 15, 2023, 9:57 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 29, 2024, 9:35 p.m.
Last updated by: Rayan C Duke University

Download data
Data set ID: 2341 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, 2-thiopheneethylamine

Product: spin-coated thin film

Description: First step: TEA2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 15, 2023, 9:58 p.m.
Entry added by: Kelly Ma
Last updated on: June 15, 2023, 9:58 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2342 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

2,3,4,5,6-pentafluorophenethylammonium lead iodide: band gap (fundamental) Verified
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: 2-pentafluorophenylacetonitrile, BH3, THF, HI, ether, PbI2 salt

Product: spin-coated thin film, high crystallinity

Description: First step: 5F-PEAI salt synthesized as follows: 5g of 2-pentafluorophenylacetonitrile dissolved in 80 mL of THF. 84 mL of BH3-THF slowly added and reaction allowed to reflux. 17mL of HI added before solution mixed for an hour. 350 mL of ether added, then solution precipitated into crystals. Second step (thin film formation): 2:1 5F-PEAI:PbI2 were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 26, 2023, 12:09 a.m.
Entry added by: Kelly Ma
Last updated on: June 26, 2023, 12:09 a.m.
Last updated by: Kelly Ma
Data correctness verified by:
  • Volker Blum Duke University

Download data
Data set ID: 2343 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

2,3,4,5,6-pentafluorophenethylammonium lead iodide: exciton binding energy Verified
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: 2-pentafluorophenylacetonitrile, BH3, THF, HI, ether, PbI2 salt

Product: spin-coated thin film, high crystallinity

Description: First step: 5F-PEAI salt synthesized as follows: 5g of 2-pentafluorophenylacetonitrile dissolved in 80 mL of THF. 84 mL of BH3-THF slowly added and reaction allowed to reflux. 17mL of HI added before solution mixed for an hour. 350 mL of ether added, then solution precipitated into crystals. Second step (thin film formation): 2:1 5F-PEAI:PbI2 were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 26, 2023, 12:11 a.m.
Entry added by: Kelly Ma
Last updated on: June 26, 2023, 12:11 a.m.
Last updated by: Kelly Ma
Data correctness verified by:
  • Volker Blum Duke University

Download data
Data set ID: 2344 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: 2-pentafluorophenylacetonitrile, BH3, THF, HI, ether, PbI2 salt

Product: spin-coated thin film, high crystallinity

Description: First step: 5F-PEAI salt synthesized as follows: 5g of 2-pentafluorophenylacetonitrile dissolved in 80 mL of THF. 84 mL of BH3-THF slowly added and reaction allowed to reflux. 17mL of HI added before solution mixed for an hour. 350 mL of ether added, then solution precipitated into crystals. Second step (thin film formation): 2:1 5F-PEAI:PbI2 were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: June 26, 2023, 12:13 a.m.
Entry added by: Kelly Ma
Last updated on: June 26, 2023, 12:13 a.m.
Last updated by: Kelly Ma
Data correctness verified by:
  • Volker Blum Duke University

Download data
Data set ID: 2345 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Methylammonium lead chloride: band gap (fundamental)
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: MACl salt, PbCl2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: July 26, 2023, 10:03 p.m.
Entry added by: Kelly Ma
Last updated on: July 26, 2023, 11:03 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2357 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Methylammonium lead chloride: exciton binding energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: MACl salt, PbCl2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: July 26, 2023, 10:05 p.m.
Entry added by: Kelly Ma
Last updated on: July 26, 2023, 11:03 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2358 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: MACl salt, PbCl2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: July 26, 2023, 10:07 p.m.
Entry added by: Kelly Ma
Last updated on: July 26, 2023, 11:04 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2359 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Methylammonium lead bromide: band gap (fundamental)
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: MABr salt, PbBr2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: July 26, 2023, 11:02 p.m.
Entry added by: Kelly Ma
Last updated on: July 26, 2023, 11:02 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2360 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Methylammonium lead bromide: exciton binding energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: MABr salt, PbBr2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: July 26, 2023, 11:05 p.m.
Entry added by: Kelly Ma
Last updated on: July 26, 2023, 11:05 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2361 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: MABr salt, PbBr2 salt, stoichiometric ratio 2:1

Product: spin-coated thin film

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: July 26, 2023, 11:06 p.m.
Entry added by: Kelly Ma
Last updated on: July 26, 2023, 11:06 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2362 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(Butylammonium) lead iodide: band gap (fundamental)

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, butylamine

Product: spin-coated thin film, high crystallinity

Description: For BA2PbI4 (I): First step: BAPbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. For BA2PbI4 (I), solution was cooled to ~80 deg C, upon which crystals began to form and left undisturbed for three days. Afterwards, crystals were slowly cooled to room temperature (rate: 2 deg C/hr). Some crystallites in the film were found in the RT (I) phase and others found in the low-temperature (II) phase. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 7, 2023, 11:26 a.m.
Entry added by: Kelly Ma
Last updated on: Aug. 7, 2023, 11:29 a.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2366 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(Butylammonium) lead iodide: exciton binding energy

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, butylamine

Product: spin-coated thin film, high crystallinity

Description: For BA2PbI4 (I): First step: BAPbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. For BA2PbI4 (I), solution was cooled to ~80 deg C, upon which crystals began to form and left undisturbed for three days. Afterwards, crystals were slowly cooled to room temperature (rate: 2 deg C/hr). Some crystallites in the film were found in the RT (I) phase and others found in the low-temperature (II) phase. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 7, 2023, 11:29 a.m.
Entry added by: Kelly Ma
Last updated on: Aug. 7, 2023, 11:29 a.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2367 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, butylamine

Product: spin-coated thin film, high crystallinity

Description: For BA2PbI4 (I): First step: BAPbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. For BA2PbI4 (I), solution was cooled to ~80 deg C, upon which crystals began to form and left undisturbed for three days. Afterwards, crystals were slowly cooled to room temperature (rate: 2 deg C/hr). Some crystallites in the film were found in the RT (I) phase and others found in the low-temperature (II) phase. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 7, 2023, 11:30 a.m.
Entry added by: Kelly Ma
Last updated on: Aug. 7, 2023, 11:30 a.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2368 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(Butylammonium) lead iodide: band gap (fundamental)

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, butylamine

Product: spin-coated thin film, high crystallinity

Description: For BA2PbI4 (II): First step: BAPbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 7, 2023, 11:33 a.m.
Entry added by: Kelly Ma
Last updated on: Aug. 7, 2023, 11:33 a.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2369 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(Butylammonium) lead iodide: exciton binding energy

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, butylamine

Product: spin-coated thin film, high crystallinity

Description: For BA2PbI4 (II): First step: BAPbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 7, 2023, 11:35 a.m.
Entry added by: Kelly Ma
Last updated on: Aug. 7, 2023, 11:35 a.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2370 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, butylamine

Product: spin-coated thin film, high crystallinity

Description: For BA2PbI4 (II): First step: BAPbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 7, 2023, 11:36 a.m.
Entry added by: Kelly Ma
Last updated on: Aug. 7, 2023, 11:36 a.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2371 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(pentylammonium) lead iodide: band gap (fundamental)
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, amylamine

Product: spin-coated thin film

Description: First step: (C5)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 7, 2023, 9:37 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 7, 2023, 9:37 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2372 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(pentylammonium) lead iodide: exciton binding energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, amylamine

Product: spin-coated thin film

Description: First step: (C5)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 7, 2023, 9:44 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 7, 2023, 9:45 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2373 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, amylamine

Product: spin-coated thin film

Description: First step: (C5)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 7, 2023, 9:45 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 7, 2023, 9:45 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2374 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

1-methyl-hexylammonium lead iodide: band gap (fundamental)

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, heptylamine

Product: spin-coated thin film

Description: First step: (C7)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O. When the crystallites were cooled to low temperature, a portion remained in phase I structure, allowing for simultaneous measurements in phase I and II structures.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 6:46 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 6:51 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2375 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

1-methyl-hexylammonium lead iodide: exciton binding energy

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, heptylamine

Product: spin-coated thin film

Description: First step: (C7)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O. When the crystallites were cooled to low temperature, a portion remained in phase I structure, allowing for simultaneous measurements in phase I and II structures.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 6:47 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 6:52 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2376 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, heptylamine

Product: spin-coated thin film

Description: First step: (C7)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O. When the crystallites were cooled to low temperature, a portion remained in phase I structure, allowing for simultaneous measurements in phase I and II structures.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 6:48 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 6:52 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2377 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

bis(decylammonium) lead iodide: band gap (fundamental)
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, decylamine

Product: spin-coated thin film

Description: First step: (C10)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:03 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:16 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2378 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

bis(decylammonium) lead iodide: exciton binding energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, decylamine

Product: spin-coated thin film

Description: First step: (C10)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:03 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:17 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2379 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, decylamine

Product: spin-coated thin film

Description: First step: (C10)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:04 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:17 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2380 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

1-methyl-hexylammonium lead iodide: band gap (fundamental)

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, heptylamine

Product: spin-coated thin film

Description: First step: (C7)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O. When the crystallites were cooled to low temperature, a portion remained in phase I structure, allowing for simultaneous measurements in phase I and II structures.

Comment: Data for phase II

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:06 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:06 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2381 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

1-methyl-hexylammonium lead iodide: exciton binding energy

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, heptylamine

Product: spin-coated thin film

Description: First step: (C7)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O. When the crystallites were cooled to low temperature, a portion remained in phase I structure, allowing for simultaneous measurements in phase I and II structures.

Comment: Data for phase II

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:06 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:06 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2382 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

See all entries for this property (2 total)

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, heptylamine

Product: spin-coated thin film

Description: First step: (C7)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O. When the crystallites were cooled to low temperature, a portion remained in phase I structure, allowing for simultaneous measurements in phase I and II structures.

Comment: Data for phase II

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:07 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:07 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2383 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(dodecylammonium) lead iodide: band gap (fundamental)
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, dodecylamine

Product: spin-coated thin film

Description: First step: (C12)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:09 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:16 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2384 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Bis(dodecylammonium) lead iodide: exciton binding energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, dodecylamine

Product: spin-coated thin film

Description: First step: (C12)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:09 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:16 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2385 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, dodecylamine

Product: spin-coated thin film

Description: First step: (C12)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:10 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:18 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2386 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, tetradecylamine

Product: spin-coated thin film

Description: First step: (C14)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:12 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:18 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2387 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, tetradecylamine

Product: spin-coated thin film

Description: First step: (C14)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:12 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:18 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2388 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, tetradecylamine

Product: spin-coated thin film

Description: First step: (C14)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:13 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:18 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2389 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

bis(1-hexadecylammonium) lead iodide: band gap (fundamental)
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, hexadecylamine

Product: spin-coated thin film

Description: First step: (C16)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:19 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:19 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2390 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

bis(1-hexadecylammonium) lead iodide: exciton binding energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, hexadecylamine

Product: spin-coated thin film

Description: First step: (C16)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:20 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:20 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2391 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PbO, HI, H3PO2, hexadecylamine

Product: spin-coated thin film

Description: First step: (C16)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:20 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:20 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2392 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:46 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:46 p.m.
Last updated by: Kelly Ma
Data correctness verified by:
  • Volker Blum Duke University

Download data
Data set ID: 2393 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:47 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:47 p.m.
Last updated by: Kelly Ma
Data correctness verified by:
  • Volker Blum Duke University

Download data
Data set ID: 2394 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:47 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:50 p.m.
Last updated by: Kelly Ma
Data correctness verified by:
  • Volker Blum Duke University

Download data
Data set ID: 2395 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:51 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:51 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2396 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:52 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:52 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2397 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:52 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:52 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2398 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:54 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:54 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2399 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:55 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:55 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2400 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:55 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:55 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2401 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 8 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 8 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2402 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 8 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 8 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2403 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: D
Sample type: film

Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt

Product: spin-coated thin film, high crystallinity

Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 8:02 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 8:02 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2405 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!


License

All data is available under the Creative Commons license with attribution clause, described here and, in its full text, here.