Crystal system: unknown
Band gap (fundamental), eV |
---|
Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt
Product: spin-coated thin film, high crystallinity
Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.
Method: Electroabsorption
Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.
Comment: Significantly more detail in paper.
Crystal system: unknown
Exciton binding energy, eV |
---|
Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt
Product: spin-coated thin film, high crystallinity
Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.
Method: Electroabsorption
Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.
Comment: Significantly more detail in paper.
Crystal system: unknown
Exciton energy, eV |
---|
Starting materials: PEABr salt, PbBr2 salt, PEACl salt, PbCl2 salt
Product: spin-coated thin film, high crystallinity
Description: Starting materials dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 min at room temperature. Substrate: Quartz substrate with 120 nm gold layer with interdigitated fingers. Precursor solution (0.05-0.1 molar) pipetted onto substrate and spin-coated, 4000 rpm / 30 seconds, targeting film thicknesses 80-300 nm.
Method: Electroabsorption
Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.
Comment: Significantly more detail in paper.