Bis(dodecylammonium) lead iodide

Chemical Formula: C24H56N2PbI4
IUPAC: bis(dodecyl-1-aminium) lead(II) iodide
Alternate Names: bis(dodecyl-1-aminium) tetraiodoplumbate(II), DA2PbI4, (C12H25NH3)2PbI4, (C12H28N)2PbI4

Organic: C12H28N
Inorganic: PbI4, Lead iodide
Dimensionality: 2D n: 1
Formal Stoichiometry: C : 24.0 , H : 56.0 , N : 2.0 , Pb : 1.0 , I : 4.0
Atomic structure Verified
Origin: experimental (T = 300.0 K, 200.0 K, 100.0 K, 50.0 K, 12.0 K, 20.0 K, 30.0 K, 50.0 K, 75.0 K, 100.0 K, 125.0 K, 150.0 K, 175.0 K, 200.0 K, 250.0 K, 300.0 K)
Lattice parameters #1

Crystal system: orthorhombic

a:8.843 (±0.002) Å
b:8.5023 (±0.0018) Å
c:48.988 (±0.009) Å
α:90°
β:90°
γ:90°
Fixed parameters:
  • temperature = 300.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #2

Crystal system: orthorhombic

a:8.699 (±0.003) Å
b:8.437 (±0.003) Å
c:49.179 (±0.013) Å
α:90°
β:90°
γ:90°
Fixed parameters:
  • temperature = 200.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #3

Crystal system: monoclinic

a:8.314 (±0.007) Å
b:8.947 (±0.008) Å
c:23.75 (±0.02) Å
α:90°
β:95.33 (±0.08)°
γ:90°
Fixed parameters:
  • temperature = 100.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #4

Crystal system: monoclinic

a:8.284 (±0.007) Å
b:8.975 (±0.009) Å
c:23.75 (±0.02) Å
α:90°
β:95.31 (±0.08)°
γ:90°
Fixed parameters:
  • temperature = 50.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #5

Crystal system: monoclinic

a:8.277 (±0.007) Å
b:8.9676 (±0.0009) Å
c:23.75 (±0.02) Å
α:90°
β:95.3 (±0.8)°
γ:90°
Fixed parameters:
  • temperature = 12.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #6

Crystal system: monoclinic

a:8.285 (±0.007) Å
b:8.98 (±0.009) Å
c:23.76 (±0.02) Å
α:90°
β:95.32 (±0.08)°
γ:90°
Fixed parameters:
  • temperature = 20.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #7

Crystal system: monoclinic

a:8.282 (±0.007) Å
b:8.977 (±0.009) Å
c:23.75 (±0.02) Å
α:90°
β:95.27 (±0.08)°
γ:90°
Fixed parameters:
  • temperature = 30.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #8

Crystal system: monoclinic

a:8.293 (±0.007) Å
b:8.967 (±0.009) Å
c:23.76 (±0.02) Å
α:90°
β:95.29 (±0.07)°
γ:90°
Fixed parameters:
  • temperature = 50.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #9

Crystal system: monoclinic

a:8.282 (±0.008) Å
b:8.978 (±0.01) Å
c:23.77 (±0.02) Å
α:90°
β:95.38 (±0.08)°
γ:90°
Fixed parameters:
  • temperature = 75.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #10

Crystal system: monoclinic

a:8.313 (±0.007) Å
b:8.946 (±0.008) Å
c:23.75 (±0.02) Å
α:90°
β:95.33 (±0.07)°
γ:90°
Fixed parameters:
  • temperature = 100.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #11

Crystal system: monoclinic

a:8.332 (±0.007) Å
b:8.958 (±0.008) Å
c:23.774 (±0.019) Å
α:90°
β:95.23 (±0.06)°
γ:90°
Fixed parameters:
  • temperature = 125.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #12

Crystal system: monoclinic

a:8.357 (±0.006) Å
b:8.964 (±0.007) Å
c:23.787 (±0.017) Å
α:90°
β:95.31 (±0.06)°
γ:90°
Fixed parameters:
  • temperature = 150.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #13

Crystal system: monoclinic

a:8.376 (±0.007) Å
b:8.968 (±0.008) Å
c:23.809 (±0.019) Å
α:90°
β:95.4 (±0.7)°
γ:90°
Fixed parameters:
  • temperature = 175.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #14

Crystal system: monoclinic

a:8.415 (±0.01) Å
b:8.954 (±0.011) Å
c:23.86 (±0.03) Å
α:90°
β:95.77 (±0.09)°
γ:90°
Fixed parameters:
  • temperature = 200.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #15

Crystal system: orthorhombic

a:8.759 (±0.003) Å
b:8.476 (±0.003) Å
c:49.115 (±0.014) Å
α:90°
β:90°
γ:90°
Fixed parameters:
  • temperature = 250.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
Lattice parameters #16

Crystal system: orthorhombic

a:8.839 (±0.003) Å
b:8.501 (±0.002) Å
c:48.962 (±0.011) Å
α:90°
β:90°
γ:90°
Fixed parameters:
  • temperature = 300.0 K
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
System description
Dimensionality: 2D
Sample type: powder

Starting materials: HI, DA (C12H25NH3), Et2O, PbI2

Product: Powder of (C12H25NH3)2PbI4

Description: Prepare dodecylammonium iodide salts via neutralization of HI with DA. Remove unreacted species by evaporation. Purify product by recrystallization in minimal diethyl ether/excess hexane and isolate via vacuum filtration. Prepare films by spin-coating or drop-casting solutions (prepared by dissolving DAI and PbI2 powders at a 2.5:1 molar ratio in a 1:0.34 volume ratio mixture of THF and methanol). To prepare powder for XRD, drop-cast thin film from 200 mg/mL solutions and anneal at 70 °C for 15 min.

Method: Powder X-ray diffraction

Description: Bruker X-ray D8 Advance diffractometer with Cu Kα1,2 radiation (λ = 1.541 Å). Spectra were collected with an angular range of 5 < 2θ < 60° and step size of 0.01022° over 60 minutes. Rietveld analysis was carried out using the TOPAS program. Low-temperature measurements were made on cooling between 300−12K using an Oxford Cyrosytem PheniX stage.

Comment: CIF file available at DOI link

E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.

Extraction method: Manual entry
Entry added on: Aug. 14, 2019, 3:42 p.m.
Entry added by: Xiaochen Du Duke University
Last updated on: April 28, 2022, 3:41 p.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 484 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

 

Atomic coordinates


Photoluminescence peak position Verified
Origin: experimental (T = 298.0 K)
Space group: P b c a
Photoluminescence peak position

Crystal system: orthorhombic

Photoluminescence peak position, nm
Fixed parameters:
  • temperature = 298.0 K
  • excitation wavelength = 480.0 nm
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
System description
Dimensionality: 2D
Sample type: film

Starting materials: HI, DA (C12H25NH3), Et2O, PbI2

Product: Thin film of (C12H25NH3)2PbI4

Description: Prepare dodecylammonium iodide salts via neutralization of HI with DA. Remove unreacted species by evaporation. Purify product by recrystallization in minimal diethyl ether/excess hexane and isolate via vacuum filtration. Prepare films by spin-coating or drop-casting solutions (prepared by dissolving DAI and PbI2 powders at a 2.5:1 molar ratio in a 1:0.34 volume ratio mixture of THF and methanol). Spin-coat films from solutions of 20 mg/mL at 2000 rpm for 30 s and anneal for 15 min at 70 °C.

Method: Photoluminescence spectra

Description: Steady-state photoluminescence emission spectra of spin-coated films on glass were measured at room temperature with a step size of 1 nm in an Edinburgh Instruments FLS980 fluorimeter by exciting with monochromated light with a 2 nm bandwidth at 480 nm.

Comment: Refer to Figure 1 for PL spectra

E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.

Extraction method: Manual entry
Entry added on: Aug. 14, 2019, 3:46 p.m.
Entry added by: Xiaochen Du Duke University
Last updated on: June 22, 2022, 9:39 p.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 485 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Absorption spectrum Verified

See all entries for this property (2 total)

Origin: experimental (T = 298.0 K)
T. Sheikh, V. Nawale, N. Pathooor, C. Phadnis, A. Chowdhury, and A. Nag, Molecular Intercalation and Electronic Two Dimensionality in Layered Hybrid Perovskites, Angewandte Chemie International Edition 59, 11653‑11659 (2020). doi: https://doi.org/10.1002/anie.202003509.
System description
Dimensionality: 2D
Sample type: single crystal

Starting materials: Lead(II) oxide (Sigma Aldrich, 99.9%), decylamine (Sigma Aldrich, 99%), hydriodic acid (Sigma Aldrich, 57% w/w in H2O, 99.9%)

Product: (DA)2PbI4 crystals

Description: (DA)2PbI4 single crystals were synthesized by dissolving lead oxide (0.5 mmol) in 20 mL of hydriodic acid by heating to boiling under constant stirring. To it, 0.5 mmol of decylamine was added. The solution was heated and stirred until the precipitate dissolved completely. Then the solution was allowed to cool naturally to room temperature.

Method: UV-visible absorption

Description: UV-Visible absorbance data were recorded on the transmission mode in Cary Series UV-Vis Spectrophotometer (Agilent Technologies).

T. Sheikh, V. Nawale, N. Pathooor, C. Phadnis, A. Chowdhury, and A. Nag, Molecular Intercalation and Electronic Two Dimensionality in Layered Hybrid Perovskites, Angewandte Chemie International Edition 59, 11653‑11659 (2020). doi: https://doi.org/10.1002/anie.202003509.

Extraction method: Engauge Digitizer
Entry added on: July 6, 2020, 4:28 p.m.
Entry added by: Lily Al-Omari University of North Carolina at Chapel Hill (Undergraduate)
Last updated on: April 7, 2022, 4:18 p.m.
Last updated by: Rayan C Duke University
Data correctness verified by:
  • Rayan C Duke University

Download data
Data set ID: 1165 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Photoluminescence
Origin: experimental (T = 300.0 K)
E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.
System description
Dimensionality: 2D
Sample type: film

Starting materials: HI, DA (C12H25NH3), Et2O, PbI2

Product: Thin film of (C12H25NH3)2PbI4

Description: Prepare dodecylammonium iodide salts via neutralization of HI with DA. Remove unreacted species by evaporation. Purify product by recrystallization in minimal diethyl ether/excess hexane and isolate via vacuum filtration. Prepare films by spin-coating or drop-casting solutions (prepared by dissolving DAI and PbI2 powders at a 2.5:1 molar ratio in a 1:0.34 volume ratio mixture of THF and methanol). Spin-coat films from solutions of 20 mg/mL at 2000 rpm for 30 s and anneal for 15 min at 70 °C.

Method: Photoluminescence spectra

Description: Steady-state photoluminescence emission spectra of spin-coated films on glass were measured at room temperature with a step size of 1 nm in an Edinburgh Instruments FLS980 fluorimeter by exciting with monochromated light with a 2 nm bandwidth at 480 nm.

E. P. Booker, T. H. Thomas, C. Quarti, M. R. Stanton, C. D. Dashwood, A. J. Gillett, J. M. Richter, A. J. Pearson, N. J. L. K. Davis, H. Sirringhaus, M. B. Price, N. C. Greenham, D. Beljonne, S. E. Dutton, and F. Deschler, Formation of Long-Lived Color Centers for Broadband Visible Light Emission in Low-Dimensional Layered Perovskites, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 139, 18632‑18639 (2017). doi: 10.1021/jacs.7b10223.

Extraction method: manually
Entry added on: July 29, 2022, 5:08 a.m.
Entry added by: Elisa Wade Albert-Ludwigs-Universität Freiburg
Last updated on: July 29, 2022, 5:10 a.m.
Last updated by: Elisa Wade Albert-Ludwigs-Universität Freiburg

Download data
Data set ID: 2031 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Band gap (fundamental)
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Band gap (fundamental)

Crystal system: unknown

Band gap (fundamental), eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: 2D
Sample type: film

Starting materials: PbO, HI, H3PO2, dodecylamine

Product: spin-coated thin film

Description: First step: (C12)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans.Absorbance and electroabsorbance were then calculated from the respective transmissions. The fundamental gap is determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:09 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:16 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2384 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Exciton binding energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton binding energy

Crystal system: unknown

Exciton binding energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: 2D
Sample type: film

Starting materials: PbO, HI, H3PO2, dodecylamine

Product: spin-coated thin film

Description: First step: (C12)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions. The exciton binding energy arises as the difference of the 1s exciton peak energy observed in conventional absorption and the fundamental gap as determined by the crossover point of absorption curves measured under different electric fields in the fundamental band gap region.

Comment: Significantly more detail in paper.

K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:09 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:16 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2385 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!

Exciton energy
Method: Electroabsorption
Origin: experimental (T = 15.0 K)
Exciton energy

Crystal system: unknown

Exciton energy, eV
Fixed parameters:
  • temperature = 15.0 K
K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.
System description
Dimensionality: 2D
Sample type: film

Starting materials: PbO, HI, H3PO2, dodecylamine

Product: spin-coated thin film

Description: First step: (C12)2PbI4 single crystal flakes synthesized as follows: Slow-cooling in HI method: 2.232g (10 mmol) of PbO dissolved in glass vial containing 10 mL of HI and 1.7 mL of H3PO2. Brought to near-boiling temperature. 10 mmol of the organic amine mixed with 5 mL HI, cooled in an ice bath. Solutions were mixed and heated, then cooled to room temperature, upon which single crystal flakes form. Crystals were then washed thrice with diethyl ether and dried under a vacuum. Second step (thin film formation): Flakes were dissolved in 4:1 DMF:DMSO solvent mixture, stirred for 30 minutes. Substrate: quartz substrate with 120 nm gold layer of interdigitated fingers. Precursor solution (0.1-0.3 molar) pipetted onto substrate and then spun at 4000 rpm for 30 seconds, targeting film thickness of 80-300nm. Film was solvent-annealed, then enclosed with 2mL dH2O.

Method: Electroabsorption

Description: Films were spin-coated onto interdigitated Au electrode array - 45 micron distance between opposing fingers. Samples mounted in cryostat with Cu wires soldered to opposing electrode stripes. Xe lamp light spectrally filtered, focused on sample and subsequently on UV-enhanced Si photodiode detector. Sample transmission, substrate transmission, and sample electrotransmission were collected in independent scans. Absorbance and electroabsorbance were then calculated from the respective transmissions.

Comment: Significantly more detail in paper.

K. Hansen, C. Wong, C. E. McClure, B. Romrell, L. Flannery, D. Powell, K. Garden, A. Berzansky, M. Eggleston, D. King, C. Shirley, M. Beard, W. Nie, A. Schleife, J. Colton, and L. Whittaker-Brooks, Uncovering Unique Screening Effects in 2D Perovskites: Implications for Exciton and Band Gap Engineering, ResearchSquare Preprint, 1‑22 (2023). doi: https://doi.org/10.21203/rs.3.rs-2667143/v1.

Extraction method: Manual from article (Table S1)
Entry added on: Aug. 16, 2023, 7:10 p.m.
Entry added by: Kelly Ma
Last updated on: Aug. 16, 2023, 7:18 p.m.
Last updated by: Kelly Ma

Download data
Data set ID: 2386 Did you find any mistakes or inconsistencies about this data? Send us a note and we'll have a look at it and send you a reply. Thanks!


License

All data is available under the Creative Commons license with attribution clause, described here and, in its full text, here.